报告题目:An extension of Calderón-Zygmund type singular integral with non-smooth kernel
报 告 人:陈艳萍
工作单位:北京科技大学
报告时间:2021-10-25 16:30-17:30
腾讯会议ID:661 769 424
报告摘要:
This talk is concerned with the generalized singular integral operator with rough kernel and the approximation problem for the generalized surface quasi-geostrophic equation. For the generalized singular integral operator, we obtain uniform L^p-L^q estimates with respect to a parameter β. From this one can recover the L^p-boundedness of the Calderón-Zygmund operator with rough kernel by letting β→0. We applied this estimate to study the Cauchy problem of the generalized surface quasi-geostrophic (SQG) equation. Local well-posedness in the Besov space and some limit behaviour of the solutions are obtained. This improves the previous results by Yu-Zheng-Jiu in 2019.
报告人简介:
陈艳萍,女,北京科技大学理学院副经理,教授,博士生导师,入选教育部“新世纪优秀人才支持计划”。2007年获得北京师范大学理学博士学位,美国密苏里大学访问学者,研究领域为调和分析及其应用。2007年以来,在Anal.&PDE、Trans. Amer. Math. Soc.、J. Funct. Anal.、Studia Math.、Rev. Mat. Iberoam.、J. Goem. Anal.、Canada. J. Math.、Potential Analysis 、Nonlinear Anal-Theory、J. Math. Anal. Appl.、Forum Math.、中国科学(英文版)等国内外知名的杂志上发表高水平论文40余篇,主持完成国家自然科学基金、中央高校基本科研业务费专项资金等项目多项。