报告题目:Regularity criterion for the 3D Navier-Stokes equations in the boardline case
报告人:李珍 北京应用物理计算数学研究所
报告时间:2023年12月14日 8:00-10:00
腾讯会议号:794 364 7383
摘要:By developing the local energy bound with $\dot{B}^{-1}_{\infty,\infty}$ and fully using the property of $\dot{B}^{-1}_{\infty,c(\N)}$ and $\dot{B}^{-1+3/p}_{p,\infty} \cap\dot{B}^{-1}_{\infty,q} (p,q<\infty)$, we provide a blow-up criterion to the 3D Navier-Stokes equations in the critical Besov space with -1 negative regularity. More precisely, if $u_3\inL^{\infty}(0,T; \dot{B}^{-1+3/p}_{p,\infty}\cap\dot{B}^{-1}_{\infty, q})$ and $u_h\in L^{\infty}(0,T; \dot{B}^{-1}_{\infty,\infty})$ with $u_h(T)\in \dot{B}^{-1}_{\infty,c(\N)}$, the smooth solution $u=(u_h,u_3)$ can be extended beyond $T$, which improves the result of Wang-Zhang and Li-Zhou .
个人简介:李珍,助理研究员,北京应用物理与计算数学研究所,从事非线性偏微分方程以及流体方程的数学理论研究。相关论文发表在AML,JMFM等重要学术期刊。曾多次获得中物院研究生院一等奖学金。
报告题目:Random data final-state problem of fourth-order inhomogeneous NLS
报告人:陶李莹 北京应用物理计算数学研究所
报告时间:2023年12月14日 10:00-12:00
腾讯会议号:794 364 7383
内容简介:We will discuss our recent progress on the almost sure global well-posedness of the fourth-order inhomogeneous nonlinear Schr\”{o}dinger equation. By establishing the smoothing estimate, time-space-weighted inhomogeneous Strichartz estimate and random Strichartz estimate, we prove that for almost every $\omega$, there exists a unique, global solution to the fourth-order inhomogeneous nonlinear Schrödinger equation that scatters to $u_\omega\in L^2$. In particular, we extend the results to higher dimensions.
个人简介:陶李莹,助理研究员,博士就读于中共工程物理研究院北京应用物理与计算数学研究所(九所),导师为苗长兴研究员,研究方向为偏微分方程相对应的随机问题。相关论文发表在JDE等重要学术期刊。