报告题目:Gaussian quadrature rules for composite highly oscillatory integrals
报 告 人:王海永 教授
工作单位:华中科技大学
报告时间:2021-11-18(周四) 19:00-21:00
腾讯会议ID: 512 353 806
https://meeting.tencent.com/dm/7kdM8xJhRnFq
报告摘要:
Highly oscillatory integrals of composite type arise in the numerical simulation of electronic circuits and their calculations remain to be a challenge since they do not fit into the classical pattern of highly oscillatory integrals of Fourier-type. In this paper, we propose two Gaussian quadrature rules for computing such integrals. The first one is constructed based on the classical theory of orthogonal polynomials and its nodes and weights can be computed efficiently by using tools of numerical linear algebra. The second one is constructed with respect to a sign-changing function and the classical theory of Gaussian quadrature can not be used anymore. Numerical experiments are presented to demonstrate the performance of the proposed methods.
报告人简介:
王海永,华中科技大学数学与统计学院教授。2010 年博士毕业于中南大学, 2011年3月至2012年12月在鲁汶大学计算机科学系做博士后。2013年至今在华中科技大学数学与统计学院工作。主要研究兴趣为谱方法以及高振荡问题数值方法。研究成果发表于SIAM J. Numer. Anal., Math. Comp., IMA J. Numer. Anal., Numer. Math.等计算数学领域著名期刊。
报告题目:Gaussian quadrature rules for composite highly oscillatory integrals
报 告 人:王海永 教授
工作单位:华中科技大学
报告时间:2021-11-18(周四) 19:00-21:00
腾讯会议ID: 512 353 806
https://meeting.tencent.com/dm/7kdM8xJhRnFq
报告摘要:
Highly oscillatory integrals of composite type arise in the numerical simulation of electronic circuits and their calculations remain to be a challenge since they do not fit into the classical pattern of highly oscillatory integrals of Fourier-type. In this paper, we propose two Gaussian quadrature rules for computing such integrals. The first one is constructed based on the classical theory of orthogonal polynomials and its nodes and weights can be computed efficiently by using tools of numerical linear algebra. The second one is constructed with respect to a sign-changing function and the classical theory of Gaussian quadrature can not be used anymore. Numerical experiments are presented to demonstrate the performance of the proposed methods.
报告人简介:
王海永,华中科技大学数学与统计学院教授。2010 年博士毕业于中南大学, 2011年3月至2012年12月在鲁汶大学计算机科学系做博士后。2013年至今在华中科技大学数学与统计学院工作。主要研究兴趣为谱方法以及高振荡问题数值方法。研究成果发表于SIAM J. Numer. Anal., Math. Comp., IMA J. Numer. Anal., Numer. Math.等计算数学领域著名期刊。