报告题目:High order semi-implicit spectral deferred correction and LDG methods for phase field models
报告人: 郭瑞晗
工作单位:郑州大学数学与统计学院
报告时间:2021-11-14 10:30-12:30
腾讯会议ID:870 866 180
报告摘要:In this talk, we will present two novel semi-implicit spectral deferred correction (SDC) time marching methods. The methods can be used in a large class of problems, especially for highly nonlinear ordinary differential equations (ODEs) without easily separating of stiff and non-stiff components, which are more general and efficient comparing with traditional semi-implicit SDC methods. The proposed semi-implicit SDC methods are based on low order time integration methods and corrected iteratively. The order of accuracy is increased for each additional iteration. In this talk we mainly focus on the applications of the phase field models. Coupled with the local discontinuous Galerkin (LDG) spatial discretization, the fully discrete schemes are all high order accurate in both space and time, and stable numerically with the time step proportional to the spatial mesh size. Numerical experiments are carried out to illustrate the accuracy and capability of the proposed semi-implicit SDC methods
报告人简介:郭瑞晗,郑州大学数学与统计学院副教授。2014年于中国科学技术大学数学学院获计算数学博士学位。2014年至2016年在法国里昂第一大学进行博士后研究。主要研究领域为相场问题高精度数值计算方法,包括间断有限元方法和高精度时间离散方法。2016年度获中国科学院优秀博士学位论文奖,主持国家自然科学青年基金项目、河南省青年人才托举工程项目。