报告题目:On rainbow disconnection of graphs
报 告 人:李学良
工作单位:南开大学组合数学中心
报告时间:2021-11-27 14:00-16:00
腾讯会议ID:4170675239
报告摘要:
Let $G$ be an edge-colored connected graph. An edge-cut $R$ of $G$ is called a rainbow cut if no two edges in $R$ are colored with a same color. An edge-colored graph $G$ is called rainbow disconnected if for every pair of vertices $u$ and $v$ of $G$, there exists a $u-v$ rainbow cut in $G$ separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by $rd(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. This is a new chromatic number. However, it is different from classic chromatic numbers. It relates global condition of graphs, not just local structural conditions. In this talk we will summarize the main results on this new graph parameter. Some open questions are also presented.
报告人简介:
李学良,南开大学教授,博士,博士生导师,教育部跨世纪优秀人才,国务院政府特殊津贴专家,国际数学化学科学院院士,教育部“组合数学创新团队”负责人, 国际数学化学科学院副主席,南开大学杰出教授。现任南开大学组合数学中心副主任,中国工业与应用数学学会常务理事、学术委员会委员、奖励工作委员会委员,天津市工业与应用数学学会名誉理事长、监事长,天津市数学会监事长。《Discrete Applied Mathematics, Elsevier》和《Journal of Mathematical Chemistry, Springer》等10余种国际杂志编委,《应用数学学报(中、英文版)》编委。主要从事于图论与组合优化、化学图论、计算机科学理论方面的研究和教学工作。在国内外本领域多种重要学术期刊上发表论文300余篇。主持国家自然科学基金重点项目1项和面上项目8项,承担过科技部国家重点基础研究发展计划(973计划)项目2项和国家自然科学基金重点项目2项,另外还参加过国家自然科学基金项目3项,并多次主持完成教育部等省部级基金项目。曾获国家教委科技进步奖、陕西省教委科技进步一等、陕西省自然科学优秀论文一等奖。